skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alex Olshevsky"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider whether distributed subgradient methods can achieve a linear speedup over a centralized subgradient method. While it might be hoped that distributed network of n nodes that can compute n times more subgradients in parallel compared to a single node might, as a result, be n times faster, existing bounds for distributed optimization methods are often consistent with a slowdown rather than speedup compared to a single node. We show that a distributed subgradient method has this “linear speedup” property when using a class of square-summable-but-not-summable step-sizes which include 1/t^β when β ∈ (1/2,1); for such step-sizes, we show that after a transient period whose size depends on the spectral gap of the network, the method achieves a performance guarantee that does not depend on the network or the number of nodes. We also show that the same method can fail to have this “asymptotic network independence” property under the optimally decaying step-size 1/t^{1/2} and, as a consequence, can fail to provide a linear speedup compared to a single node with 1/t^{1/2} step-size. 
    more » « less